martes, 9 de agosto de 2011

ENDULZAMIENTO O DESACIDIFICACIÓN DEL GAS NATURAL

 
INTRODUCCIÓN

El gas natural es una fuente de energía no renovable formada por una mezcla de gases que se encuentra frecuentemente en yacimientos de petróleo, disuelto o asociado con el petróleo o en depósitos de carbón.

Aunque su composición varía en función del yacimiento del que se extrae, está compuesto principalmente por metano en cantidades que comúnmente pueden superar el 90 ó 95% , y suele contener otros gases como nitrógeno, dióxido de carbono (CO2), sulfuro de hidrogeno ( H2S), helio y mercaptanos. Es por esto que para su purificación al ser  extraído, es pasado por varios métodos, como el endulzamiento o desacidificación, con la finalidad de eliminar los componentes innecesarios en lo que hemos extraído del yacimiento.

La demanda del gas natural obliga a mejorar los procesos de endulzamiento, con el incremento de la producción de gas dulce y la disminución de los costos de operación. Estudios realizados en esta área se encaminan a la reducción de pérdidas de amina, mediante la manipulación de las variables operativas e implementación de dispositivos, obteniéndose excelentes resultados en el ahorro de costos sin alterar la capacidad ni la calidad de endulzamiento.



CONCLUSIÓN

El endulzamiento del gas se hace con el fin de eliminar el H2S y el CO2 del gas natural. Como se sabe el H2S y el CO2 son gases que pueden estar presentes en el gas natural y pueden en algunos casos, especialmente el H2S, ocasionar problemas en el manejo y procesamiento del gas; por esto hay que eliminarlos para llevar el contenido de estos gases ácidos a los niveles exigidos por los consumidores del gas. El H2S y el CO2 se conocen como gases ácidos, porque en presencia de agua forman ácidos, y un gas natural que posea estos contaminantes se conoce como gas agrio.

Entre los problemas que se pueden tener por la presencia de H2S y CO2 en un gas se pueden mencionar:

- En la combustión se puede formar SO2 que es también altamente tóxico y corrosivo.

- Disminución del poder calorífico del gas.

- Promoción de la formación de hidratos.

- Cuando el gas se va a someter a procesos criogénicos es necesario eliminar el CO2 porque de lo contrario se solidifica.

- Los compuestos sulfurados (mercaptanos (RSR), sulfuros de carbonilo (SCO) y disulfuro de carbono (CS2)) tienen olores bastante desagradables y tienden a concentrarse en los líquidos que se obtienen en las plantas de gas; estos compuestos se deben eliminar antes de que los compuestos se puedan usar.

-Toxicidad del H2S

 - Corrosión por presencia de H2S y CO2.

La concentración del H2S en el aire o en un gas natural se acostumbra a dar en diferentes unidades. La conversión de un sistema de unidades a otro se puede hacer teniendo en cuenta lo siguiente:

1 grano = 0,064798 g                       Peso molecular del H2S = 34.

             ppm (V) = %(V)*104                          Granos/100PCN = (5.1)

            Miligramos/m³ = (5.2)     Donde, %(V) es la concentración en porcentaje por volumen y ppm (V) es la concentración en partes por millón por volumen.

Gas ácido

            Gas natural que contiene altas impurezas en alta concentración, tales como; ácido sulfhídrico (hidrógeno sulfurado), dióxido de carbono (anhídrido carbónico, gas carbónico) u otros componentes corrosivos y que debe ser tratado antes de su utilización RSH, SO2, también es llamado gas de cola, en algunos sitios es el residuo resultante de despojar el gas natural de los componentes ácidos, se usa para calificar la presencia de dióxido de carbono en el gas, conjuntamente con el sulfuro de hidrogeno. Los vapores que emergen de las plantas de endulzamiento, como residuos del proceso, son gases ácidos, los que llegan a la planta se denominan gases agrios.

Las normas CSA, específicamente la 2.184 para tuberías, define un gas ácido como aquel que contiene más de un grano de H2S/100 pies cúbicos de gas, lo cual es igual a 16ppm (1gramo= 15.43granos).

Procesamiento del Gas Natural

Consiste principalmente en:

   * La eliminación de compuestos ácidos (H2S) y CO2) mediante el uso de tecnologías que se basan en sistemas de absorción - agotamiento utilizando un solvente selectivo. El gas alimentado se denomina “amargo”, el producto “gas dulce” y el proceso se conoce como Endulzamiento.

   * La recuperación de etano e hidrocarburos licuables mediante procesos criogénicos (el uso de bajas temperaturas para la generación de un líquido separable por destilación fraccionada) previo proceso de deshidratación para evitar la formación de sólidos.

   * Recuperación del azufre de los gases ácidos que se generan durante el proceso de endulzamiento. Realizado en la unidad recuperadora de azufre, pero esta no siempre se van a obtener solo se da cuando la cantidad de H2S es alta.

   * Fraccionamiento de los hidrocarburos líquidos recuperados, obteniendo corrientes ricas en etano, propano, butanos y gasolina; en ocasiones también resulta conveniente separar el isobutano del n- butano para usos muy específicos.

   * Proceso de endulzamiento

Un proceso de endulzamiento se puede decir, en general, que consta de cuatro etapas

   * Endulzamiento. Donde se le remueve por algún mecanismo de contacto el H2S y el CO2 al gas. Esto se realiza en una unidad de endulzamiento y de ella sale el gas libre de estos contaminantes, o al menos con un contenido de estos igual o por debajo de los contenidos aceptables.

   * Regeneración. En esta etapa la sustancia que removió los gases ácidos se somete a un proceso de separación donde se le remueve los gases ácidos con el fin de poderla reciclar para una nueva etapa de endulzamiento. Los gases que se deben separar son obviamente en primer lugar el H2S y el CO2 pero también es posible que haya otros compuestos.

   *  Recuperación del Azufre. Como el H2S es un gas altamente tóxico y de difícil manejo, es preferible convertirlo a azufre elemental, esto se hace en la unidad recuperadora de azufre. Esta unidad no siempre se tiene en los procesos de endulzamiento pero cuando la cantidad de H2S es alta se hace necesaria.

   *  Limpieza del gas de cola. El gas que sale de la unidad recuperadora de azufre aún posee de un 3 a un 10% del H2S eliminado del gas natural y es necesario eliminarlo, dependiendo de la cantidad de H2S y las reglamentaciones ambientales y de seguridad. La unidad de limpieza del gas de cola continua la remoción del H2S bien sea transformándolo en azufre o enviándolo a la unidad recuperadora de azufre.

   * Incineración. Aunque el gas que sale de la unidad de limpieza del gas de cola sólo posee entre el 1 y 0.3% del H2S removido, aun así no es recomendable descargarlo a la atmósfera y por eso se envía a una unidad de incineración donde mediante combustión el H2S es convertido en SO2, un gas que es menos contaminante que el H2S.

   * Procesos de amina

Uno de los procesos más importantes en el endulzamiento de gas natural es la eliminación de gases ácidos por absorción química con soluciones acuosas con alcanolaminas. De los solventes disponibles para remover H2s y CO2 de una corriente de gas natural, las alcanolaminas son generalmente las más aceptadas y mayormente usadas que los otros solventes existentes en el mercado.

Descripción del proceso

Consta de dos etapas:

   * Absorción de gases ácidos: En ella se lleva acabo la retención del ácido sulfhídrico y el bióxido de carbono de una corriente de gas natural amargo utilizando una solución acuosa de Dietanolamina a baja temperatura y alta presión.

   * Regeneración de la solución absorberte: Es el complemento del proceso donde se lleva a cabo la desorción de los compuestos ácidos, diluidos en la solución mediante la adición de calor a baja presión, reutilizando la solución en el mismo proceso.

El proceso con aminas más antiguo y conocido es el MEA. En general los procesos con aminas son los más usados por su buena capacidad de remoción, bajo costo y flexibilidad en el diseño y operación. Las alcanol-aminas más usadas son: Monoetanolamina (MEA), Dietanolamina (DEA), Trietanolamina (TEA), Diglicolamina (DGA), Diisopropano-lamina (DIPA) y Metildietanolamina (MDEA).

Los procesos con aminas son aplicables cuando los gases ácidos tienen baja presión parcial y se requieren bajas concentraciones del gas ácido en el gas de salida (gas residual).

La MEA tiene la reactividad más alta y por lo tanto la mayor capacidad para eliminar H2S, además como tiene el menor peso molecular ofrece la mayor capacidad para remover H2S por unidad de masa, lo que implica menores tasas de circulación en una planta de endulzamiento. La MEA tiene una desventaja importante y es la alta pérdida de solución debido a lo siguiente: posee una presión de vapor relativamente alta lo que ocasiona altas pérdidas por vaporización, y reacciona irreversiblemente con algunos compuestos de azufre y carbono. Otra desventaja es que absorbe hidrocarburos y su corrosividad.

La DEA no es tan reactiva con el H2S como la MEA, por lo tanto en algunas ocasiones es incapaz de llevar el contenido de H2S hasta los niveles requeridos; pero tiene una ventaja importante con respecto a la MEA y es que las pérdidas de solución no son tan altas pues tiene una presión de vapor menor al igual que su velocidad de reacción con los compuestos de carbono y azufre. Tiene capacidad adecuada para eliminar COS, CS2 y RSR. Es degradable por el CO2, y los productos de la reacción no se pueden descomponer en la regeneración.

La TEA prácticamente ha sido reemplazada por la DEA y la MEA debido a su baja capacidad relativa para quitar H2S; igual situación se presenta con las demás etanol-aminas.

Los tanques de almacenamiento y compensación de la MEA, deben tener un colchón de gas para evitar que establezca contacto con el aire porque se oxida.

En el proceso de regeneración de la amina al aplicar calor a la solución rica se reversan las reacciones del H2S y el CO2 con las aminas, pero no las reacciones con CS, CS2 y RSR que producen compuestos insolubles. Para remover estos contaminantes se usa un regenerador o purificador, conocido como “reclaimer”.

   * Absorción de los gases ácidos

Cuenta con los siguientes equipos:

   * Torre Absorbedora de gases ácidos

   * Separador de gas combustible

A esta sección se le alimenta dos corrientes, una de gas amargo proveniente de los módulos de compresión y otra de solución acuosa de Dietanolamina, el gas amargo es alimentado por el fondo de la torre absorbedora a una presión de 84.1 Kg/cm2 y 35°c, para ponerse en contacto a contracorriente con la solución de Dietanolamina regenerada (DEA POBRE), misma que es alimentada por el primer plato de la torre. Antes de entrar a la torre absorbedora la DEA POBRE pasa por un enfriador tipo soloaire donde se abate la temperatura hasta unos 40°c aproximadamente.

La torre absorbedora de gas amargo, cuenta con 20 platos en los cuales la solución de DEA POBRE se pone en contacto íntimo con el gas, absorbiéndole casi la totalidad de los gases ácidos presentes en la corriente de gas amargo alimentada a la planta endulzadora, el gas dulce abandona la torre por el domo dirigiéndose al separador del gas combustible, el cual cuenta con una malla separadora para asegurar la recuperación de la DEA que el gas haya podido arrastrar. El gas dulce después de pasar por la válvula de control que regula la presión a esta sección es enviado a la red de gas combustible, la DEA recuperada sale del separador de gas combustible y se une a la corriente de DEA proveniente del fondo de la torre absorbedora (DEA RICA), que se envía de nivel a la sección de regeneración de la Dietanolamina.

Procesos de absorción

Se caracterizan porque el gas agrio se pone en contacto en contracorriente con una solución en la cual hay una substancia que reacciona con los gases ácidos. El contacto se realiza en una torre conocida como contactora en la cual la solución entra por la parte superior y el gas entra por la parte inferior. Las reacciones que se presentan entre la solución y los gases ácidos son reversibles y por lo tanto la solución al salir de la torre se envía a regeneración. Los procesos con aminas son los más conocidos de esta categoría y luego los procesos con carbonato.

El punto clave en los procesos de absorción química es que la contactora sea operada a condiciones que fuercen la reacción entre los componentes ácidos del gas y el solvente (bajas temperaturas y altas presiones), y que el regenerador sea operado a condiciones que fuercen la reacción para liberar los gases ácidos (bajas presiones y altas temperaturas).

Procesos con carbonato

También conocidos como procesos de carbonato caliente porque usan soluciones de carbonato de potasio al 25 – 35% por peso y a temperaturas de unos 230 °F. En el proceso de regeneración el KHCO3 reacciona consigo mismo o con KHS, pero prefiere hacerlo con el KHCO3 y por tanto se va acumulando el KHS, lo cual le va quitando capacidad de absorción, la mayoría de los procesos con carbonato caliente contienen un activador el cual actúa como catalizador para acelerar las reacciones de absorción y reducir así el tamaño de la contactora y el regenerador; estos activadores son del tipo aminas (normalmente DEA) o ácido bórico.

Procesos de absorción física

Depende de la presión parcial del contaminante y estos procesos son aplicables cuando la presión del gas es alta y hay cantidades apreciables de contaminantes. Los solventes se regeneran con disminución de presión y aplicación baja o moderada de calor o uso de pequeñas cantidades de gas de despojamiento. En estos procesos el solvente absorbe el contaminante pero como gas en solución y sin que se presenten reacciones químicas; obviamente que mientras más alta sea la presión y la cantidad de gas mayor es la posibilidad de que se disuelva el gas en la solución.

Tienen alta afinidad por los hidrocarburos pesados. Si el gas a tratar tiene un alto contenido de propano y compuestos más pesados el uso de un solvente físico puede implicar una pérdida grande de los componentes más pesados del gas, debido a que estos componentes son liberados del solvente con los gases ácidos y luego su separación no es económicamente viable. El uso de solventes físicos para endulzamiento podría considerarse bajo las siguientes condiciones:

   * Proceso Selexol

Usa como solvente un dimetil éter de polietilene glicol (DMPEG). La mayoría de las aplicaciones de este proceso han sido para gases agrios con un alto contenido de CO2 y bajo de H2S. La solubilidad del H2S en el DMPEG es de 8 –10 veces la del CO2, permitiendo la absorción preferencial del H2S. Cuando se requieren contenidos de este contaminante para gasoducto en el gas de salida del proceso se le agrega DIPA al proceso; con esta combinación la literatura reporta que simultáneamente con bajar el contenido de H2S a los niveles exigidos se ha logrado remover hasta un 85% del CO2.

Beneficios:

• Selectivo para el H2S

• No hay degradación del solvente por no haber reacciones químicas

• No se requiere “reclaimer”.

• Pocos problemas de corrosión

• El proceso generalmente utiliza cargas altas de gas ácido y por lo tanto tiene bajos requerimientos en tamaño de equipo.

• Se estima que remueve aproximadamente el 50% del COS y el CS2.

   * Proceso de lavado con agua

Beneficios:

   * Como no hay reacciones químicas los problemas de corrosión son mínimos y el líquido usado se regenera haciéndolo pasar por un separador para removerle el gas absorbido, no se requiere aplicación de calor o muy poca, es un proceso bastante selectivo. La principal desventaja es que requiere una unidad recuperadora de azufre.

   * El proceso es efectivo a presiones altas, contenidos altos de gases ácidos y relaciones H2S/CO2 altas. Algunas veces se recomienda combinar este proceso con el de aminas para reducir costos.

   * En el proceso el gas ácido es enviado de abajo hacia arriba en la torre y hace contacto con el agua que viene de arriba hacia abajo. El gas que sale por la parte superior de la torre está parcialmente endulzado y se envía a la planta de aminas para completar el proceso de endulzamiento. El agua que sale del fondo de la torre se envía a un separador de presión intermedia para removerle los hidrocarburos disueltos y al salir de éste se represuriza para enviarla a un separador de presión baja donde se le remueven los gases ácidos y de aquí el agua ya limpia se recircula a la torre.



   * Procesos Híbridos

Presentan un intento por aprovechar las ventajas de los procesos químicos, alta capacidad de absorción y por tanto de reducir los niveles de los contaminantes,

El proceso híbrido más usado es el Sulfinol que usa un solvente físico, sulfolano (dióxido de tetrahidrotiofeno), un solvente químico (DIPA) y agua. Una composición típica del solvente es 40- 40-20 de sulfolano, DIPA y agua respectivamente. La composición del solvente varía dependiendo de los requerimientos del proceso de endulzamiento especialmente con respecto a la remoción de COS, RSR y la presión de operación.

Los efectos de la DIPA y el sulfolano para mejorar la eficiencia del proceso son diferentes. La DIPA tiende a ayudar en la reducción de la concentración de gases ácidos a niveles bajos, el factor dominante en la parte superior de la contactora, y el sulfolano tiende a aumentar la capacidad global de remoción, el factor dominante en el fondo de la contactora. Como los solventes físicos tienden a reducir los requerimientos de calor en la regeneración, la presencia del sulfolano en este proceso reduce los requerimientos de calor a niveles menores que los requeridos en procesos con aminas. El diagrama de flujo del proceso sulfinol es muy similar al de los procesos químicos.

   * Procesos de Conversión Directa

Estos procesos remueven el H2S y lo convierten directamente a azufre elemental sin necesidad de unidad recuperadora de azufre. Estos procesos utilizan reacciones de oxidación – reducción que involucran la absorción de H2S en una solución alcalina. Entre estos métodos está el proceso Stretford y el proceso del Hierro Esponja.

   * Proceso Stretford.

Es el más conocido de los métodos de conversión directa y en él se usa una solución 0.4 N de Na2CO3 y NaHCO3 en agua. Una de las ventajas del proceso es que el CO2 no es afectado y continua en el gas, lo cual algunas veces es deseable para controlar el poder calorífico del gas.

El gas agrio entra por el fondo de la contactora y hace contacto en contracorriente con la solución del proceso. Con este proceso se pueden tener valores de concentración de H2S tan bajos como 0.25 granos/100 PC (4PPM) hasta 1.5 PPM. La solución permanece en la contactora unos 10 minutos para que haya contacto adecuado y se completen las reacciones y luego al salir por el fondo se envía a un tanque de oxidación, en el cual se inyecta oxígeno por el fondo para que oxide el H2S a Azufre elemental; el mismo oxígeno inyectado por el fondo del tanque de oxidación envía el azufre elemental al tope del tanque de donde se puede remover.

Ventajas del Proceso

• Buena capacidad para remover H2S. Puede bajar su contenido a menos de 2PPM.

• Proceso Selectivo no remueve CO2.

• No requiere unidad recuperadora de azufre.

• El azufre obtenido es de pureza comercial pero en cuanto a su color es de menor calidad que el obtenido en la unidad recuperadora de azufre.

Desventajas del Proceso

• Es complicado y requiere equipo que no es común en operaciones de manejo.

• El solvente se degrada y el desecho de algunas corrientes que salen del proceso es un problema; está en desarrollo un proceso que no tiene corrientes de desecho.

• Los químicos son costosos.

• El proceso no puede trabajar a presiones mayores de 400 Lpca.            

   * Proceso del Hierro Esponja

Es aplicable cuando la cantidad de H2S es baja (unas 300 ppm) y la presión también. Requiere la presencia de agua ligeramente alcalina, es un proceso de adsorción en el cual el gas se hace pasar a través de un lecho de madera triturada que ha sido impregnada con una forma especial hidratada de Fe2O3 que tiene alta afinidad por el H2S, la temperatura se debe mantener por debajo de 120 °F pues a temperaturas superiores y en condiciones ácidas o neutras se pierde agua de cristalización del óxido férrico.

La regeneración no es continua sino que se hace periódicamente, es difícil y costosa; además el azufre se va depositando en el lecho y lo va aislando del gas, el proceso de regeneración es exotérmico y se debe hacer con cuidado, inyectando el aire lentamente, para evitar que se presente combustión. Generalmente, después de 10 ciclos el empaque se debe cambiar.

En algunos diseños se hace regeneración continua inyectando O2 al gas agrio. Las principales desventajas de este proceso son:

   * Regeneración difícil y costosa

   * Pérdidas altas de presión

   * Incapacidad para manejar cantidades altas de S

   * Problemas para el desecho del S pues no se obtiene con la calidad adecuada para venderlo.

   * Procesos de Absorción en Lecho Seco

El gas agrio se hace pasar a través de un filtro que tiene afinidad por los gases ácidos y en general por las moléculas polares presentes en el gas entre las que también se encuentra el agua. El más común de estos procesos es el de las mallas moleculares aunque algunos autores también clasifican el proceso del hierro esponja en esta categoría, aunque son menos usados que los procesos químicos presentan algunas ventajas importantes tales como: Simplicidad, alta selectividad (solo remueven H2S) y la eficiencia del proceso no depende de la presión. Se aplica a gases con concentraciones moderadas de H2S y en los que no es necesario remover el CO2.

   * Proceso con Mallas Moleculares

Es un proceso de adsorción física similar al aplicado en los procesos de deshidratación por adsorción. Las mallas moleculares son prefabricadas a partir de aluminosilicatos de metales alcalinos mediante la remoción de agua de tal forma que queda un sólido poroso con un rango de tamaño de poros reducido y además con puntos en su superficie con concentración de cargas; esto hace que tenga afinidad por moléculas polares como las de H2S y H2O; además debido a que sus tamaños de poro son bastante uniformes son selectivas en cuanto a las moléculas que remueve. Dentro de los poros la estructura cristalina crea un gran número de cargas polares localizadas llamadas sitios activos. Las moléculas polares, tales como las de H2S y agua, que entran a los poros forman enlaces iónicos débiles en los sitios activos, en cambio las moléculas no polares como las parafinas no se ligarán a estos sitios activos; por lo tanto las mallas moleculares podrán endulzar y deshidratar simultáneamente el gas.

Las mallas moleculares son poco usadas, pero se pueden aplicar cuando la cantidad de gas a tratar es baja; además se pueden usar como complemento en procesos de endulzamiento y y/o cuando se requieren contenido muy bajos de agua.

Ventajas

   * Son económicamente favorables para endulzar gases con bajo contenido de H2S.

   * Pueden ser muy selectivas y dejar casi el 100% de CO2.

   * Cuando hay presencia de agua pueden endulzar y deshidratar simultáneamente.

Desventajas

   * El gas que sale de la regeneración en algunos casos no se puede mezclar con los gases de combustión del proceso de incineración

   * Se puede formar COS en la malla molecular por reacción entre el CO2 y el H2S y por lo tanto en el proceso de regeneración se va a obtener un gas de salida que no estaba presente en el gas agrio.

No hay comentarios:

Publicar un comentario